Amorphous Boron containing Silicon Carbo-Nitrides created by ion sputtering
نویسندگان
چکیده
Silicon carbo-nitride films with Boron were deposited onto Silicon, glass and SS304 Stainless Steel substrates using the ion beam assisted deposition (IBAD) method. The coating composition, rate of ion-assistance and substrate temperature were varied. Films were examined by X-Ray Diffraction, Scanning Electron microscopy, Energy Dispersive X-Ray analysis, Cathodoluminescence, Atomic Force Microscopy and Nano-indentation. The composition and chemical bonding variation was found to be dependent on deposition conditions. All coatings were amorphous, fully dense and showed high hardness up to 33 GPa. It is suggested that the low friction coefficient of about 0.3, measured against Al2O3 using the pin-on-disk method, may be the result of the presence of C nanoclusters which are formed under the low energy deposition conditions. Films deposited on Stainless Steel had an onset of rapid thermal oxidation at 1150 C in air as determined by thermogravimetric analysis. The films have a Tauc bandgap between 2.2 and 2.8 eV and were also exceptionally high electrical resistive which may indicate the presence of localized states.
منابع مشابه
Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering
Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...
متن کاملBoron Doping of Hydrogenated Amorphous Silicon Prepared by rf-co-Sputtering
This paper addresses the doping mechanism of amorphous semiconductors through the investigation of boron doped rf co-sputtered amorphous hydrogenated silicon. The activation energy and room temperature conductivity varied from 0.9 to 0.3 eV and from 10 12 to 10 4 Ohm .cm , respectively, by ranging the boron concentration from 0 to 3 at.%. These ranges of electronic properties are of the same or...
متن کاملPreparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کاملCathodoluminescence from Amorphous and Nanocrystalline Nitride Thin Films Doped with Rare Earth and Transition Metals
Rare earth (RE) ion luminescence has long been used in laser and optical fiber communications technology. Bulk RE doped oxides were widely used in color phosphors for Cathode Ray Tubes. The wide band gap (WBG) semiconductors and insulators have been used for visible emission at 300 K from RE ions since the reports first by Zanata (Zanatta and Nunes 1998) for Er in silicon nitride (photoluminesc...
متن کاملUsing doping superlattices to study transient-enhanced diffusion of boron in regrown silicon
A boron-doped silicon superlattice consisting of three boron spikes separated by 1700 Å of undoped silicon has been grown by molecular beam epitaxy and used to study the evolution of point defects following an amorphizing implant of Si. After MBE growth, the wafer was implanted at 77 K with either 146 or 292 keV Si at a dose of 5�1015/cm2. These implants produced amorphous layer depths that coi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015